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Abstract. We propose an exact method for locating the zeros of the Jost function for analytic
potentials in the complex momentum plane. We further extend the method to the complex
angular-momentum plane to provide the Regge trajectories. It is shown, by using several
examples, that highly accurate results for extremely wide, as well as for extremely narrow,
resonances with or without the presence of the Coulomb interaction can be obtained.

1. Introduction

Much effort has been devoted in the past to developing methods for calculating the energies
and widths of resonances in the potential scattering theory. A comprehensive survey on
this subject can be found in [1]. These methods can be divided into two categories. The
first one is based on methods traditionally employed for real energies where one can locate
the position of relatively narrow resonances with a sufficiently high accuracy, but has
many difficulties in determining their widths and usually fails for broad resonances. In the
second one the calculations are performed at complex energies, and therefore the widths
and resonant energies are obtained simultaneously.

The complex methods have the advantage that the calculations are based on a rigorous
definition of resonances, namely, as singularities of Sheatrix. Thus, in addition to
the information on resonances themselves, they provide us with information about the
analytic properties of thd-matrix and the off-shell properties of the underlying interaction.
However, the existing complex-energy methods are much more complicated than those of
the first group and require sophisticated mathematical and computational methods to handle
them.

Usually, the complex methods are referred to as the ‘direct calculation approaches’, but
very often with the quotation marks [2] because most of them are based on an expansion
of the resonant wavefunction in terms of square-integrable functions and the subsequent
determination of the expansion coefficients either by a diagonalization of the non-Hermitian
Hamiltonian or by a variational procedure.

The method we present here formally belongs to the second group, i.e. to the complex-
energy methods. It is based on exact differential equations for functions closely related
to the Jost solutions and which coincide with the Jost functions at large distances [3-5].
Unlike the existing methods, it is simple to apply and although it exploits the idea of
the complex rotation of the coordinates, it is different from the traditionally used complex

1 Permanent address: Joint Institute for Nuclear Research, Dubna, 141980, Russia.

0305-4470/97/103725+13$19.5@C) 1997 IOP Publishing Ltd 3725



3726 S A Sofianos ahS A Rakityansky

dilation methods in that it does not employ expansion or variational procedures. Instead,
the Jost function at a complex energy is obtained directly from exact equations equivalent
to the Schdinger equation.

To demonstrate the effectiveness and accuracy of our approach, we performed
calculations using potentials previously employed by other authors [6-9]. We not only
located the resonances cited by them but also found sequences of Jost function zeros
corresponding to broad and extremely narrow resonances which were not considered or
missed in the aforementioned references.

In addition to the location of zeros in the complesplane, the present method enables
us to locate the zeros of Jost functions in the complex angular momentum plane. We
demonstrated this by locating the zeros, known as Regge poles, representing resonances in
the complex¢-plane.

The paper is organized as follows. In section 2 our formalism is presented, while
section 3 is devoted to the boundary conditions. In section 4 the method is applied to
several examples and the results obtained are discussed and compared with those obtained
by other methods.

2. Basic equations

Consider the one-channel problem of two, generally charged, particles. Apart from the
Coulomb force, we assume that these particles interact via a central potéatjahaving
the properties

1@or2V(r) =0 1)
and

lim rv(r) =0. )
The radial Schvdinger equation reada & 1)

[9, + k% — (€ + 1) /r? = 2nk/r]®o(k, 1) = V (r)De(k, 7). (3)

The regular solutionsb,(k, r), for any complext # 0 and complex? in the half plane
Rel > —%, are defined by the boundary condition

im{e(k, r)/ FoG, k)] = 1 @

where Fy(n, kr) is the regular Coulomb function [10].

In contrast tod, (k, r), the physical solutions (bound, scattering, and Siegert states) are
defined by their behaviour at large distances. However, they are all regulas 41 and
thus proportional tod,(k, r). Therefore, once the functio®,(k, r) is determined at all
complex momentd, it represents, in a most general form, all solutions of physical interest
of equation (3) since any physical solution at specific valuek cén be obtained from it
merely by multiplying®,(k, r) by the proper normalization constant.

At large distance®,(k, r) can be written as a linear combination

(k. r) —> SLH (0, kr) £ 1, K9 + Hy™ G, k) fo(n, 0], (5)

The functionsH,™ (1, z) are defined in terms of the regul&¥(y, z) and irregularG,(», z)
Coulomb functions [10, 11, 15],

HP(0,2) = F(,2) FiGe(, 2) (6)
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and have the asymptotic behaviour,

HF (1, z2) lz‘j:ozpiexp{ii[z —nln2z —tn/2+argh@ +1+in]}.  (7)

For neutral particles or high energies where the Sommerfeld parameted, the Coulomb
functions reduce to the Riccati—-Bessel, Riccati-Neumann, and Riccati-Hankel functions
[10], i.e.

Fe(n, 2) njgjz(z)
Gi(n,z2) — —n(z)
n—0

HE(0,2) — 1 @),

The momentum-dependent coefficients in the above linear combination, equation (5), are the
Jost functions which are analytical for all complexf physical interest and for Ree> —%.
The last restriction ot stems from the fact that at Re= —% the role of F;(n, z) and

G¢(n, z), of being regular and irregular at the origin, is interchanged [11].

For integer (physicaly the Jost function has zeros at a discrete sequence of ggjnts
i =123, ..., situated either on the imaginary axis of thglane or under the real axis.

At these points only the first term in the asymptotic form (5) survives, corresponding to
either a bound (It > 0) or a Siegert (Inkt < 0) state behaviour for large

On the other hand, for real values &f (physical energies), the functiof(n, k)
can have zeros at compleéxwhich move, with increasing?, along the so-called Regge
trajectories which define families of bound and resonant states [11]. Therefore, when the
Jost function is known at all complex values bfand at all permissible values df it
contains all the information and characteristics of the spectrum of the underlying physical
system.

In [5] we proposed a method for a direct calculation of the Jost function for any complex
momentum of physical interest. In this approach we use a combination of the variable
constant [12] and the complex coordinate-rotation [13] methods to solve thédbuter
equation (3) in an efficient and accurate way without resorting to any approximation,
expansion, or variational (stabilization) procedures. For this, we perform a complex rotation
of the coordinater

r = xexpif) x>0 6 € [0, Omaxl Omax < /2 (8)
in the Schodinger equation (3) and look for a solution in the form
@ (k. r) = 3[H O, kr) Fy Y (n, k. x, 0) + HZ (n, kr) FL7 (0. ke, x,0)] 9

Where}‘éi)(n,k,x,e) are new unknown functions (variable constants) which at large
become, according to equation (5), true constants. In this way the initial value problem,
defined by equations (3) and (4), reduces to the following first-order coupled differential
equations

el
0 F (0. ko, 0) = o HE (1, k) V()

x[HP (g, k) FV (0, k, x,0) + H (n, k) FO (n, k, x, 0)] (10)

_ gt

0. F 7k, x,0) = — o
x[H k) FP .k, x,0) + HT (0, kr)F (. k, x, 0)] (11)

H (n, kr)V (r)
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with the simple boundary conditions
FP 0, k,0,0) = F (0, k,0,0) =1 (12)

which follow immediately from equations (4), (6), and (9).

In [5] it was proved that if the potential obeys conditions (1) and (2), with complex
defined by (8), then for all complek situated above the dividing ling| exp(—i6) and for
x — oo, the functionF.~(n, k, x, 0) has ag-independent limit which coincides with the
Jost function, i.e.

lim 7, k,x,0) = foln, k) (13)

while the functionF\* (n, k, x, 6) converges tof;"(n, k*) at all spectral points;, i =
1,2,3,..., for which f;(n, ko;) = 0.

The proof was based on the asymptotic behaviour of the funcﬂl}ﬁé(n, kr) at larger,
and can be generalized to also include the complex angular moméntlinis generalization
is straightforward since the angular momentum appears only in the phase factor of the
asymptotic form, equation (7), and therefore for a comgleke functions?,™ (1, k, x, 6)
at largex have the same behaviour and the asymptotic relation (13) is also valid.

Thus, the procedure of calculating the Jost function is very simple since for any fixed
pair of k and ¢ we only need to solve the system of first-order differential equations (10)
and (11) fromx = 0 to somexmax where]—',ﬁ_)(n, k, x, 0) attains a constant value (usually,
xmax IS the range of the potentidl). According to equation (13), this constant is just
the Jost functionf,(n, k) we are looking for. Simultaneously, as a bonus, we obtain the
exact wavefunction in the form of equation (9) having the correct asymptotic behaviour.
Depending on the choice of the momentiéimit can be a bound, scattering, or a Siegert
state wavefunction (rotated whén> 0).

The resonances in a specific region of comptegan be easily located by taking the
rotation angled large enough to cover this region and then search for zeros of the Jost
function. The zeros in the compléxplane can be similarly located with= 0.

We emphasize that this method is exact. Although we employ the complex rotation,
we do not need any stabilization procedure. This has been demonstrated in [5] where we
employed an analytically solvable model and showed that equations (10) and (11) give at
least five-digit accuracy for the Jost function in a wide area of compldrspite the fact
that the simplest Runge—Kutta method of integration was used.

3. Boundary conditions

3.1. Short distances

Formally, we have to start the integration of equations (10) and (11) freaD. However,
for £ # 0 the functionsH,™ (1, kr) are irregular, i.e. at the origin they behave as [14]

Fi (kr )f { O(nkrInkr) fore =0

H(i) ,k L A
C R G+ Do \ 2 Otr™Y  for £ £0

where
2 exp(—mn/2)
r@2e+2)

In [5] it was shown that the corresponding singularitiescat O in the above differential
equations (10) and (11) are integrable when condition (1) is fulfilled. Thus, there is no

Ci(n) = [C+1+inTE+1—in]Y2
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problem from a formal point of view. However, in practical calculations we cannot start
from x = 0 and therefore we have to shift the initial point to some small vajyg Thus,
to implement the boundary conditions, we need to krjﬁ}ﬁ)(n, k, Xmin, 0).

There are several ways to circumvent this problem. One of them consists of transforming
the differential equations, equations (10) and (11), into an equivalent pair of integral Volterra-
type equations, namely,

i0 X i ) )
FP 0.k, x,0) = 11%/ HP (, kx'é)V (x'd) Dy (k, x'd”) dx’  (14)
0

where ®,(k, r) is defined by equation (9). We can solve these integral equations in the
interval [0, xmn] iteratively as follows:

féi)(O)(na ka Xmin, 9) = 1

é@ Xmin . . :
FEV 0k xmin 0) = 1% - / H{™ (1, kxe”)V (x&) Fo (. kxe) dr
0

(15)

i6 Xmin

é . .
FEN 0k xmn, ) = 1 o | HT 0, ke ()
0

x[H (7, kxd®) FON D (5, k, x,0)
+H (n, kx€)F NP, k, x, 0)]

and then integrate the differential equations starting from the valug of" (1, k, xmin, 0).

For small values ofimin, the above iteration procedure converges very fast. Moreover,
when implementing the method we found that if Rie small ¢~ 1), then a surprisingly high
accuracy (better than seven digits) can be achieved even with the lowest-order iteration,
equation (15). For higher values of Rehowever, the use of these simple boundary
conditions could result in numerical instabilities. This is due to the ansatz (9) which is
suitable for large distances, but is not good in the vicinityrof 0. Indeed, near this
point the function®,(k, r), by its definition, is regular and therefore the singularities of
Hf)(n, kr) and He(’)(n, kr) are cancelled. This is secured by the boundary conditions (12).
In numerical calculations, however, the cancellation of singularities is always a precarious
procedure and a source of possible numerical errors. These errors increase with increasing
Re¢ since in this cased, ™ (y, kr) is more singular. Therefore, the greater (Ris, the
further the pointrmi, must be shifted from the origin in order to avoid cancellation errors.
This shift, in turn, requires more iterations of equation (14) to obtain the boundary values
]-'e(i)(n, k, xmin, @) t0 a required accuracy.

Another way to handle the boundary condition problem is to replace at short distances
the ansatz (9) by a more suitable one. Indeed, this ansatz was motivated by the variable
constant method [12], i.e. we looked for a solution of equation (3) in the form of a linear
combination of its two independent solutioa™ and H~ corresponding td/(r) = 0.

When the potential is taken into account, the coefficients of this combinationdependent
and obey equations (10) and (11). Thus, insteaﬂlﬁf)(n, kr) we can choose another pair
of linearly independent solutions, namel¥,(n, kr) and G,(n, kr), and the new ansatz
reads

Dk, r) = Fe(m, kr)A¢(n, k, x,0) + Ge(n, kr)Be(n, k, x, 0). (16)
Since (9) and (16) are merely different representations of the same function, we have
F2 .k x,0) = Ay(n. k. x,0) £iBy(n. k. x,0) (17)
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and the equations for the functiods (n, k, x, 6) and B,(n, k, x, 6) are

OxAe(n, k, x,0) = %gGe(n, kr)V () Fe(n, kr)Ae(n, k, x,0) + Ge(n, kr)Be(n, k, x, 0)]
(18)
0y Be(n, k, x,0) = —;Fz(n, kr)V (r)[Fe(n, kr)Ae(n, k, x,0) + Ge(n, kr)Be(n, k, x, 0)].
(19)
The corresponding boundary conditions,
A¢(n,k,0,0) =1 By(n,k,0,0) =0 (20)

follow immediately from (12) and (17).

In other words, we have two equivalent pairs of equations, equations (10), (11) and (18),
(19), defining the same functiod,(k, ) in its two different representations (9) and (16).
Computationally it is easier to start the integration of equations (18) and (189)aand
continue it up to some intermediate poing; (not necessary small), and then to integrate
equations (10) and (11) fromp; t0 xmax Where F, (1, k, xmax 0) coincides with the Jost
function.

Similarly to equations (10) and (11) the differential equations 4otn, k, x, #) and
B¢(n, k, x, 6) can be transformed into integral Volterra-type equations,

0 x
Ac(n, k,x,0) =1+ e'k/ Go(n, kx'€)V (x'é")d,(k, x'é”) dx’ (21)
0

i0 x
Bi(n, k, x,0) = —%/ F,(n, kx'€)V (x'é) D, (k, x'é’) dx’ (22)
0

where ®,(k, r) is defined by equation (16). Iterations of these integral equations can also
be used to obtain corrections, if necessary, to the simplest form of the boundary conditions,
namely,

Az(nak,xmin»e) = 1 Bl(r/ak»xmin’ 9) = 0' (23)

3.2. Large distances

The behaviour ofb,(k, r) at large distances, is determined by the functiéfs’ (;, kr).
Therefore, the correct asymptotic form is automatically secured.

Indeed, suppose we have found on the positive imaginary axis of-fiiane a value
ko for which ]—“l(’)(n, ko, Xmax, 0) = 0 (when Imk > 0 we can always pu# = 0), i.e. we
located a zero of the Jost function corresponding to a bound state. The physical bound state
wavefunction is then given by,

@PoUNYkg, ) = N ®y (ko, 1)

and differs from®,(kg, 7) only by a normalization facto\” which can, in principle, be
found along withd, (ko, r) in terms of the Jost function and its derivative [15, 16], or simply
from the normalization integral. At largeonly the first term of equation (9) survives, i.e.

Pelho, 1) = 1F (1, ko, xmax O HL Y (n, kor). (24)

Obviously, in this expression the exponentially decaying tail of the bound state wavefunction
is presented in an exact form.
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For scattering states (real positi¥g, the asymptotic form ofb,(k, r) contains both
terms of equation (9),
etk 1) = STH 00, kN F 01,k xmae O+ H (00, k) F (1, ko xma O] (25)

where the functionﬁ}i)(n, kr) represent the incoming and outgoing spherical waves (again
in the exact form). The scattering Wavefuncti(mjfka“(r), differs from ®,(k, r) only by a
constant factor, namely,

1
scat (+) (+) (=) (=)
05y = - [H, " (n, kr)F," (0, k, x,0) + H, " (n, kr)F,; " (n, k, x, 0)]
o 2-7:55 )(77’ k, Xmax, Q) ‘ ‘ ‘ ‘

(26)
where we assume that the scattering stadg$" are normalized according to
(wzf:attllyzcats — S(k/ _ k:)

and expand in partial waves as follows:

21 . . oa .
(r Wi = \/; o DGR Y R Yo ().

tm

For the Siegert states, corresponding to zerofpﬁ‘)(n, k, xmax @) in the lower half
of the k-plane, we have the same kind of asymptotic behaviour a®,itio, r) given by
equation (24) but in this cage> 0, and therefore such states can be treated and normalized
similarly to bound states [2].

In summary, representation (16) secures the proper behaviodr, @, ) at short
distances, while representation (9) guarantees its correct behaviour atrlargbe use
of these representations enables us to achieve high accuracy in the solution of equation (3)
at all complex values of.

4. Numerical examples

In order to demonstrate the ability and accuracy of the proposed method, we choose two

simple potentials previously used in [6-9]. This choice is further motivated by the richness

of the spectra generated by these potentials and by their simple form. And, as we found,

their spectra include very wide, as well as extremely narrow, resonances which are difficult

to locate with most of the existing methods. Thus, they are ideally suited as testing cases.
In atomic units [17], these potentials have the following form

Va(r) = 7.5r2 exp(—r) + =
-
and
Va(r) = 5exp[-0.25(r — 3.5)?] — 8 exp(—0.2r2).

The reader not accustomed to the atomic units, may assume that the above potentials are
given in MeV and the distances in fm. In such a cad¢2m = ; MeV fm~2 while the
Sommerfeld parameter is given lpy= z/k. Then the numerical values of the resonance
energies are the same and independent of the unit used (MeV or atomic units). In what
follows, in order to avoid possible misunderstanding, we will use the MeV fonits. We

note thatVy(r) is a good case to test the ability of the method to deal with interactions
having a Coulomb tail. Similarly to [9] we assumed that the Coulomb part is attractive
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Table 1. The zeroskg of the Jost function in the complekplane and the energieBy and
widths " of the S-wave resonances for the potentig{r) with (z = —1) and without(z = 0)
the Coulomb term.

z ko (fm™1) Eo (MeV) I (MeV) Reference
0 2617786172-i0.004879876 3.426390331 0.025548962 this work
3.42639 0.025549 6]
3.4257 0.0256 [7]
3.426 0.0256 8]
3.426 0.0258 [9]

0 3130042444-i0.357144253 4.834806841 2.235753338 this work
0 3398392393-i0.997251873 5.277279780 6.778106356 this work

—1 1887074210-i0.000025362 1.780524536 0.000095719  this work
1.7805 0.0000958  [9]

—1 2871167766-i0.201530270 4.101494946 1.157254428 this work

—1 3169186525-i0.846652839 4.663461099 5.366401539 this work

with z = —1. In order to compare our results with those given in [6-8], we also performed
calculations with; = 0.

To locate zeros of the Jost function in the compieglane as well as in the complex
¢-plane, we searched for minima of its moduluslj(‘)(n,k,xmax,e)h considered as a
function of two variables, either Reand Imk or Re¢ and Im¢. This is based on the
so-called maximum modulus principle for a complex-valued function [18]. According to
this principle, when a functiorf (z) is holomorphic and not constant in a regidnof the
complex plane]f(z)| can never attain its maximum in the interior Bf but only on the
boundary of D. Therefore the minima of f(z)| must coincide with the zeros of (z).
Indeed, assuming thaf (z)| has a minimum at = zg inside the area and f(z9) # 0
then around the poindy the function ¥f(z) is holomorphic and has a maximum inside an
area, which contradicts the maximum modulus principle. Thus, if a minimuhy @f| is
found, it must be the zero of (z).

The located zeros of the Jost function in the fourth quadrant of the compgane for
the potentialVy(r) for the ¢ = 0 partial wave, and the corresponding resonance energies
and widths are presented in table 1 together with the results of [6-9]. Our calculations have
been performed with the simplest boundary condition (23). This was sufficient to achieve
an accuracy of at least nine digits. This is checked by changing the rotationasglee
the Jost function must be-independent. We note that only few S-wave resonances are
presented although many more were located. The reason is that this potential has already
been used by several authors (but only for the ¢ase0) and thus we employed it in order
to compare our results with those of [6-9]. The sequence of the S-wave resonant zeros
continues downwards in the compléxplane. This behaviour can be seen in figure 1 where
these zeros are plotted. A similar behaviour was also found for resonances of higher partial
waves. In these cases, however, the first few zeros of the sequences are closer to the real
axis (which means that they have a smaller width). The same properties were found for the
resonances of the potentitiy(r) which generates a richer spectrum.

A comparison with the other calculations for the poten¥a(r) shows (see table 1)
that only the ‘direct’ (dilatation) method of [6] gives an accuracy which is comparable with
ours. In that reference, the five-digit accuracy was achieved by using over 40 exponentially
decreasing functions in the expansion of the rotated Siegert state. In contrast, a nine-digit
accuracy is achieved by our method without any exertion and, if neccessary, can easily be



Exact method for locating potential resonances 3733

N
W
~

Im k

|
\\\\\\\\\‘\\\\\\\\\

[ ]
\\\\\\\\\‘\\\\\\\\\

Figure 1. The zeros of the Jost function for the S-wave resonances of the poténtialwith
(open circles) and without (full circles) the Coulomb term. Exact values are given in table 1.
The dividing line corresponds to the rotation angle- 0.1x.

improved. Such an improvement is of crucial importance when one deals with extremely
narrow resonances. When the width of a resonance is seven orders of magnitude less than
its energy, one needs at least a seven-digit accuracy to be able to discern it.

Another extreme situation is the case of very broad resonances, i.e. when the Jost
function zeros are situated far below the real axis. As can be seen in table 1, even for
the first resonanceHy = 3.426390331 MeV,I' = 0.025548962 MeV) only a three-
digit accuracy of the width has been achieved by the ‘real-energy methods’ of [7, 8]
and by the ‘semi-complex method’ of [9] while the next, moderately broad, resonance
(Eo = 4.834806 841 MeV ]I = 2.235 753 338 MeV), is already beyond their resolution.

The ‘real-energy methods’ of [7, 8] consider eigenenergies of a system enclosed in a
box. These eigenenergies are moving together with the change of the radius of the box,
generating the so-called quasicrossings at resonance energies. The width of a resonance is
determined by the width of the quasicrossing. Such an approach exploits the physical idea
that the resonant states, are only slightly affected by variations of the radius of the box, in
contrast to the spurious states that emerge in the box. It seems, however, that this idea is not
suitable for broad resonant states. Indeed, in figure 1 of [7] and figure 1 of [8], presenting
the box eigenenergies, no traces of the the second quasicrossing of the S-wave resonance
at E = 4.834806 841 MeV or of the third af = 5.277 279 780 MeV can be found.

It is claimed that broad resonances are unimportant and thus the inability of a method to
describe them is a minor drawback. However, in certain physical systems, broad resonances
play a significant role. An example is tt#g,(1535 resonance of the interaction of the
meson with a nucleon which lies 48 MeV above the threshold while its width is 150 MeV
[19]. Nevertheless it prescribes the dynamics of thmeson interaction with nuclei. In
particular, due to this resonanance, certginucleus systems can have quasibound states
[20].

One of the advantages of the exact method presented in this work, is that bound,
scattering, and resonant states can be treated in a uniform way regardless of their width.
All spectral points can be located with the same accuracy irrespective of their location on
the complexk-plane. This is exemplified by the spectral analysis of the poteifial).
Sequences of the bound and resonant states generated by this potential are given in tables 2
and 3. The S- and P-wave sequences are also shown in figure 2.

The S-wave states, generated by the potemtiat), were previously considered in [7],
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Table 2. The zeroskg of the Jost function in the complekplane and the energieBy and

widths " of the S-wave bound and resonant states for the potevitia)).

£ ko (fm™1 Eo (MeV) I (MeV) Reference

0 i3.023634507 —4.571182814 0 this work

0 i1.329872758 —0.884280776 0 this work

0 2122442334-i0.000027 859 2.252380731 0.000118256 this work
2.252 37 0.0001196 [7]

0 3.000600515-i0.041316851 4.500948 186 0.247950731  this work
4.50 0.28 [7]

0 3485234669-i0.360967 988 6.008 281 406 2516116297 this work

0 3.974580284-i0.788297 975 7.587937 367 6.266307 179  this work

0 4.454733926-i1.227097 054 9.169443586 10.932781876 this work

0 4.922800349-i1.664647328 10.731456273 16.389452891 this work

0 5378677040-i2.097566794 12.265190122 22.564268707 this work

Table 3. The zeroskg of the Jost function in the complekplane and the energiesy and
widths " of the bound and resonant states for the poteftigt) in several higher partial waves

1<e<9.

£ ko (fm™1 Eo (MeV) I (MeV)

1 i2.289054 013 —2.619884138 0

1 1270932606-i0.000000043 0.807634844 0.000000110
1 2674841953-i0.002433228 3.577386775 0.013017001
1 3263588553-i0.162882441 5.312239776 1.063162540
1 3742982846-i0.564324132 6.845729429 4.224511090
1 4225164261-i0.999000737 8.427005280 8.441884426
1 4696779393-i1.437816345 9.996210410 13.506212364
1 5156711217-i1.873567558 11.540707589 19.322893683
2 i1.232503483 —0.759532418 0

2 2183644493-i0.000018973 2.384151637 0.000082 862
2 3052966547-i0.035600651 4.659668666 0.217 375191
2 3527492840-i0.341406094 6.163323809 2.408615103
3 1420585762-i0.000000016 1.009031953  0.000 000 046
3  2760769155-i0.001484354 3.810922062 0.008195917
3  3343986231-i0.139396664 5.581406240 0.932281051
3 3802701793-i0.526397919 7.091723079  4.003468 620
4 2313665822-i0.000006013 2.676524768  0.000027 824
4 3170315114-i0.023354979 5.025176235 0.148085287
4 3623738918-i0.294896551 6.522259887  2.137256217
4 A4076486137-i0.706384524 8.059380065 5.759133441

where only the first two resonances were found. As can be seen in table 2, the spherical-box
method of [7] provides the position of the first (nharrow) resonance fairly well. However,
the width is obtained only to two correct digits. For the second resonance, which is broader
than the first one, the accuracy for the energy evaluation is down to three digits and for the
width just to one digit. The other resonances of the S-wave sequence, presented in table 2,
were not obtained with the box method.

The accuracy of the present method is determined by the accuracy of the solution



Exact method for locating potential resonances 3735

47\\\\ \\\\‘\\\\‘\\\\ L \\\\7
5% .

. ]

27 —

i ]

"7 —

<© [ ]
S r Re k b
- r 1 2 3 4 5 1
O R B R A A B — 1
I . ]

L L ] 4

—1 ° |
—2r o
737\\\\ N N N N I N | N N \\\\7

Figure 2. The zeros of the Jost function corresponding to bound and resonant states generated
by the potentialVz(r) in the S- (open circles) and P- (full circles) partial waves. The full box
indicates the D-wave bound state. Exact values are given in tables 2 and 3. The dividing line
corresponds to the rotation angle= 0.15r.

Table 4. The two lowest Regge trajectories for the potentia(r). Only those points which
correspond to the bound and resonant energies are given.

First Regge trajectory Second Regge trajectory
E (MeV) ¢ E (MeV) ¢
—4.571182814 0 —0.884280776 0
—2.619884138 1 0.807634844  .0DO 000 000+ i0.000 000 034
—0.759532418 2 2.384151637 .0RO 000 006G+ i0.000 027 431

1.009031953 B00 000 0006+ i0.000 000013 3.810922062  .999963 480+ i0.003081 380
2.676524 768 400000 000+ i0.000 008 632 5.025176235 .9B073697#-i0.065066 318

of the differential equations. By choosing the tolerance to be small enough we
can locate practically all resonances. Two remarkable examples of extremely narrow
resonances, generated by the potenWalr), are the one found for the P-wave at
Eo = 0.807634844 MeV [ = 0.110 x 10°% MeV) and the other for the F-wave at
Eo =1.009031953 MeV I = 0.46x 10" MeV) and are parts of the sequences presented
in table 3. If the attraction of the potential is slightly increased, these extremely narrow
resonances become bound states in the P and F partial waves.

Some of the Jost-function zeros found in the complgane are given in tables 4 and
5. The corresponding Regge trajectories are depicted in figure 3. Each trajectory begins
from an S-wave spectral state. The first one begins from the ground state and passes via
the lowest states of each partial wave. When the energy is negative, the trajectory lies on
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Table 5. The third and fourth Regge trajectories for the poteritialr). These trajectories start
from the lowest S-wave resonances.

Third Regge trajectory Fourth Regge trajectory

E (MeV) 4 E (MeV) 14

2.252380731 —0.000000010+ i0.000041610 4.500948186 —0.037200122+i0.130360179
3.577386775 ©99 888 289+ i0.005 370 144 5.312239776 .26 629 120+ i0.451 038 159
4.659 668 666 D76 641344+i0.104 936778 6.163 323809 .3B9037872+i0.838973703
5.581406 240 B05402233+10.392410862 7.091723079 .025517176+11.253 031 383
6.522 259 887 530415810+1i0.760317 663 8.059 380065 .684772674+11.671995431

)
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Figure 3. The five lowest Regge trajectories for the potentig{r). Exact values of the points
are given in tables 4 and 5. Full circles indicate points which coincide (they are at the same
place of the¢-plane but correspond to different energies) or cannot be distinguished.

the real axis, while at positive energies it gradually goes upwards. We note that the width
of a narrow resonance can, in principle, be found vi& Iwhich corresponds to an integer
value of Re. However, the relation betwedhand Im¢ also involves the derivative of the
trajectory [16].

The Regge trajectories, can provide us with useful information on the spectrum of the
physical system. They combine bound and resonant states into families and therefore in
calculating such trajectories, we can find out at which energies and in which partial waves
resonances must exist. Furthermore, the Regge trajectories give us a general insight into
the spectrum of the Hamiltonian under consideration. For example, we can state that the
F-wave resonance & = 1.009 031953 MeV is the narrowest one for the potentigl-).

This follows from the fact that this resonance belongs to the lowest Regge trajectory and is
the first on it.

In conclusion, the method we present in this article, enables us to locate the zeros of the
Jost function in the complek-plane and to calculate the Regge trajectories in the complex
¢-plane in a simple, efficient, and extremely accurate way. To the best of our knowledge,
no other method has achieved such a performance in the past. Since it is based on exact
equations, the method simultaneously provides us with the corresponding wavefunctions of
the spectral states.

As a final note we mention that the method can be easily generalized to treat coupled
channel problems having the same angular momentum. In such a case we replace the
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potential and the function, (y, k, x, #) by matrices and the spectrum is then defined by

the zeros of the Jost-matrix determinant. Channels of different angular momenta can also
be treated in the same manner, but this requires a more elaborate treatment of the boundary
conditions atx = 0 since some off-diagonal elements of the matriges’ for different

¢ may be singular at the origin. Non-local potentials can also be considered within the
proposed approach. Work on all these generalizations is under way.
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