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Abstract. We propose an exact method for locating the zeros of the Jost function for analytic
potentials in the complex momentum plane. We further extend the method to the complex
angular–momentum plane to provide the Regge trajectories. It is shown, by using several
examples, that highly accurate results for extremely wide, as well as for extremely narrow,
resonances with or without the presence of the Coulomb interaction can be obtained.

1. Introduction

Much effort has been devoted in the past to developing methods for calculating the energies
and widths of resonances in the potential scattering theory. A comprehensive survey on
this subject can be found in [1]. These methods can be divided into two categories. The
first one is based on methods traditionally employed for real energies where one can locate
the position of relatively narrow resonances with a sufficiently high accuracy, but has
many difficulties in determining their widths and usually fails for broad resonances. In the
second one the calculations are performed at complex energies, and therefore the widths
and resonant energies are obtained simultaneously.

The complex methods have the advantage that the calculations are based on a rigorous
definition of resonances, namely, as singularities of theS-matrix. Thus, in addition to
the information on resonances themselves, they provide us with information about the
analytic properties of theS-matrix and the off-shell properties of the underlying interaction.
However, the existing complex-energy methods are much more complicated than those of
the first group and require sophisticated mathematical and computational methods to handle
them.

Usually, the complex methods are referred to as the ‘direct calculation approaches’, but
very often with the quotation marks [2] because most of them are based on an expansion
of the resonant wavefunction in terms of square-integrable functions and the subsequent
determination of the expansion coefficients either by a diagonalization of the non-Hermitian
Hamiltonian or by a variational procedure.

The method we present here formally belongs to the second group, i.e. to the complex-
energy methods. It is based on exact differential equations for functions closely related
to the Jost solutions and which coincide with the Jost functions at large distances [3–5].
Unlike the existing methods, it is simple to apply and although it exploits the idea of
the complex rotation of the coordinates, it is different from the traditionally used complex

† Permanent address: Joint Institute for Nuclear Research, Dubna, 141980, Russia.

0305-4470/97/103725+13$19.50c© 1997 IOP Publishing Ltd 3725



3726 S A Sofianos and S A Rakityansky

dilation methods in that it does not employ expansion or variational procedures. Instead,
the Jost function at a complex energy is obtained directly from exact equations equivalent
to the Schr̈odinger equation.

To demonstrate the effectiveness and accuracy of our approach, we performed
calculations using potentials previously employed by other authors [6–9]. We not only
located the resonances cited by them but also found sequences of Jost function zeros
corresponding to broad and extremely narrow resonances which were not considered or
missed in the aforementioned references.

In addition to the location of zeros in the complexk-plane, the present method enables
us to locate the zeros of Jost functions in the complex angular momentum plane. We
demonstrated this by locating the zeros, known as Regge poles, representing resonances in
the complex̀ -plane.

The paper is organized as follows. In section 2 our formalism is presented, while
section 3 is devoted to the boundary conditions. In section 4 the method is applied to
several examples and the results obtained are discussed and compared with those obtained
by other methods.

2. Basic equations

Consider the one-channel problem of two, generally charged, particles. Apart from the
Coulomb force, we assume that these particles interact via a central potentialV (r) having
the properties

lim
r→0

r2V (r) = 0 (1)

and

lim
r→∞ rV (r) = 0. (2)

The radial Schr̈odinger equation reads (¯h = 1)

[∂r + k2− `(`+ 1)/r2− 2ηk/r]8`(k, r) = V (r)8`(k, r). (3)

The regular solutions8`(k, r), for any complexk 6= 0 and complex̀ in the half plane
Re` > − 1

2, are defined by the boundary condition

lim
r→0

[8`(k, r)/F`(η, kr)] = 1 (4)

whereF`(η, kr) is the regular Coulomb function [10].
In contrast to8`(k, r), the physical solutions (bound, scattering, and Siegert states) are

defined by their behaviour at large distances. However, they are all regular atr = 0 and
thus proportional to8`(k, r). Therefore, once the function8`(k, r) is determined at all
complex momentak, it represents, in a most general form, all solutions of physical interest
of equation (3) since any physical solution at specific values ofk can be obtained from it
merely by multiplying8`(k, r) by the proper normalization constant.

At large distances8`(k, r) can be written as a linear combination

8`(k, r)−→
r→∞

1
2[H(+)

` (η, kr)f ∗` (η, k
∗)+H(−)

` (η, kr)f`(η, k)]. (5)

The functionsH(±)
` (η, z) are defined in terms of the regularF`(η, z) and irregularG`(η, z)

Coulomb functions [10, 11, 15],

H
(±)
` (η, z) ≡ F`(η, z)∓ iG`(η, z) (6)
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and have the asymptotic behaviour,

H
(±)
` (η, z) −→

|z|→∞
∓i exp{±i[z − η ln 2z − `π/2+ arg0(`+ 1+ iη)]}. (7)

For neutral particles or high energies where the Sommerfeld parameterη→ 0, the Coulomb
functions reduce to the Riccati–Bessel, Riccati–Neumann, and Riccati–Hankel functions
[10], i.e.

F`(η, z)−→
η→0

`(z)

G`(η, z)−→
η→0
−n`(z)

H
(±)
` (η, z)−→

η→0
h
(±)
` (z).

The momentum-dependent coefficients in the above linear combination, equation (5), are the
Jost functions which are analytical for all complexk of physical interest and for Rè> − 1

2.
The last restriction oǹ stems from the fact that at Re` = − 1

2 the role ofF`(η, z) and
G`(η, z), of being regular and irregular at the origin, is interchanged [11].

For integer (physical)̀ the Jost function has zeros at a discrete sequence of pointsk0i ,
i = 1, 2, 3, . . ., situated either on the imaginary axis of thek-plane or under the real axis.
At these points only the first term in the asymptotic form (5) survives, corresponding to
either a bound (Imk > 0) or a Siegert (Imk < 0) state behaviour for larger.

On the other hand, for real values ofk2 (physical energies), the functionf`(η, k)
can have zeros at complex̀which move, with increasingk2, along the so-called Regge
trajectories which define families of bound and resonant states [11]. Therefore, when the
Jost function is known at all complex values ofk and at all permissible values of̀, it
contains all the information and characteristics of the spectrum of the underlying physical
system.

In [5] we proposed a method for a direct calculation of the Jost function for any complex
momentum of physical interest. In this approach we use a combination of the variable
constant [12] and the complex coordinate-rotation [13] methods to solve the Schrödinger
equation (3) in an efficient and accurate way without resorting to any approximation,
expansion, or variational (stabilization) procedures. For this, we perform a complex rotation
of the coordinater

r = x exp(iθ) x > 0 θ ∈ [0, θmax] θmax< π/2 (8)

in the Schr̈odinger equation (3) and look for a solution in the form

8`(k, r) = 1
2[H(+)

` (η, kr)F (+)` (η, k, x, θ)+H(−)
` (η, kr)F (−)` (η, k, x, θ)] (9)

whereF (±)` (η, k, x, θ) are new unknown functions (variable constants) which at largex

become, according to equation (5), true constants. In this way the initial value problem,
defined by equations (3) and (4), reduces to the following first-order coupled differential
equations

∂xF (+)` (η, k, x, θ) = eiθ

2ik
H
(−)
` (η, kr)V (r)

×[H(+)
` (η, kr)F (+)` (η, k, x, θ)+H(−)

` (η, kr)F (−)` (η, k, x, θ)] (10)

∂xF (−)` (η, k, x, θ) = − eiθ

2ik
H
(+)
` (η, kr)V (r)

×[H(+)
` (η, kr)F (+)` (η, k, x, θ)+H(−)

` (η, kr)F (−)` (η, k, x, θ)] (11)



3728 S A Sofianos and S A Rakityansky

with the simple boundary conditions

F (+)` (η, k,0, θ) = F (−)` (η, k,0, θ) = 1 (12)

which follow immediately from equations (4), (6), and (9).
In [5] it was proved that if the potential obeys conditions (1) and (2), with complexr

defined by (8), then for all complexk situated above the dividing line|k| exp(−iθ) and for
x → ∞, the functionF (−)` (η, k, x, θ) has aθ -independent limit which coincides with the
Jost function, i.e.

lim
x→∞F

(−)
` (η, k, x, θ) = f`(η, k) (13)

while the functionF (+)` (η, k, x, θ) converges tof ∗` (η, k
∗) at all spectral pointsk0i , i =

1, 2, 3, . . ., for which f`(η, k0i ) = 0.
The proof was based on the asymptotic behaviour of the functionsH

(±)
` (η, kr) at larger,

and can be generalized to also include the complex angular momentum`. This generalization
is straightforward since the angular momentum appears only in the phase factor of the
asymptotic form, equation (7), and therefore for a complex` the functionsF (±)` (η, k, x, θ)

at largex have the same behaviour and the asymptotic relation (13) is also valid.
Thus, the procedure of calculating the Jost function is very simple since for any fixed

pair of k and ` we only need to solve the system of first-order differential equations (10)
and (11) fromx = 0 to somexmax whereF (−)` (η, k, x, θ) attains a constant value (usually,
xmax is the range of the potentialV ). According to equation (13), this constant is just
the Jost functionf`(η, k) we are looking for. Simultaneously, as a bonus, we obtain the
exact wavefunction in the form of equation (9) having the correct asymptotic behaviour.
Depending on the choice of the momentumk, it can be a bound, scattering, or a Siegert
state wavefunction (rotated whenθ > 0).

The resonances in a specific region of complexk can be easily located by taking the
rotation angleθ large enough to cover this region and then search for zeros of the Jost
function. The zeros in the complex̀-plane can be similarly located withθ = 0.

We emphasize that this method is exact. Although we employ the complex rotation,
we do not need any stabilization procedure. This has been demonstrated in [5] where we
employed an analytically solvable model and showed that equations (10) and (11) give at
least five-digit accuracy for the Jost function in a wide area of complexk despite the fact
that the simplest Runge–Kutta method of integration was used.

3. Boundary conditions

3.1. Short distances

Formally, we have to start the integration of equations (10) and (11) fromx = 0. However,
for ` 6= 0 the functionsH(±)

` (η, kr) are irregular, i.e. at the origin they behave as [14]

H
(±)
` (η, kr)−→

r→0

∓i

2`(2`+ 1)C`(η)

(
kr

2

)−`
+
{
O(ηkr ln kr) for ` = 0

O(η(kr)1−`) for ` 6= 0

where

C`(η) = 2` exp(−πη/2)
0(2`+ 2)

[0(`+ 1+ iη)0(`+ 1− iη)]1/2.

In [5] it was shown that the corresponding singularities atx = 0 in the above differential
equations (10) and (11) are integrable when condition (1) is fulfilled. Thus, there is no
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problem from a formal point of view. However, in practical calculations we cannot start
from x = 0 and therefore we have to shift the initial point to some small valuexmin. Thus,
to implement the boundary conditions, we need to knowF (±)` (η, k, xmin, θ).

There are several ways to circumvent this problem. One of them consists of transforming
the differential equations, equations (10) and (11), into an equivalent pair of integral Volterra-
type equations, namely,

F (±)` (η, k, x, θ) = 1± eiθ

ik

∫ x

0
H
(∓)
` (η, kx ′eiθ )V (x ′eiθ )8`(k, x

′eiθ ) dx ′ (14)

where8`(k, r) is defined by equation (9). We can solve these integral equations in the
interval [0, xmin] iteratively as follows:

F (±)(0)` (η, k, xmin, θ) = 1

F (±)(1)` (η, k, xmin, θ) = 1± eiθ

ik

∫ xmin

0
H
(∓)
` (η, kxeiθ )V (xeiθ )F`(η, kxeiθ ) dx

...

F (±)(N)` (η, k, xmin, θ) = 1± eiθ

2ik

∫ xmin

0
H
(∓)
` (η, kxeiθ )V (xeiθ )

×[H(+)
` (η, kxeiθ )F (+)(N−1)

` (η, k, x, θ)

+H(−)
` (η, kxeiθ )F (−)(N−1)

` (η, k, x, θ)]

(15)

and then integrate the differential equations starting from the value ofF (±)(N)` (η, k, xmin, θ).
For small values ofxmin the above iteration procedure converges very fast. Moreover,

when implementing the method we found that if Re` is small (∼ 1), then a surprisingly high
accuracy (better than seven digits) can be achieved even with the lowest-order iteration,
equation (15). For higher values of Re`, however, the use of these simple boundary
conditions could result in numerical instabilities. This is due to the ansatz (9) which is
suitable for large distances, but is not good in the vicinity ofr = 0. Indeed, near this
point the function8`(k, r), by its definition, is regular and therefore the singularities of
H
(+)
` (η, kr) andH(−)

` (η, kr) are cancelled. This is secured by the boundary conditions (12).
In numerical calculations, however, the cancellation of singularities is always a precarious
procedure and a source of possible numerical errors. These errors increase with increasing
Re` since in this caseH(±)

` (η, kr) is more singular. Therefore, the greater Re` is, the
further the pointxmin must be shifted from the origin in order to avoid cancellation errors.
This shift, in turn, requires more iterations of equation (14) to obtain the boundary values
F (±)` (η, k, xmin, θ) to a required accuracy.

Another way to handle the boundary condition problem is to replace at short distances
the ansatz (9) by a more suitable one. Indeed, this ansatz was motivated by the variable
constant method [12], i.e. we looked for a solution of equation (3) in the form of a linear
combination of its two independent solutionsH(+)

` andH(−)
` corresponding toV (r) ≡ 0.

When the potential is taken into account, the coefficients of this combination arer-dependent
and obey equations (10) and (11). Thus, instead ofH

(±)
` (η, kr) we can choose another pair

of linearly independent solutions, namely,F`(η, kr) andG`(η, kr), and the new ansatz
reads

8`(k, r) = F`(η, kr)A`(η, k, x, θ)+G`(η, kr)B`(η, k, x, θ). (16)

Since (9) and (16) are merely different representations of the same function, we have

F (±)` (η, k, x, θ) ≡ A`(η, k, x, θ)± iB`(η, k, x, θ) (17)
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and the equations for the functionsA`(η, k, x, θ) andB`(η, k, x, θ) are

∂xA`(η, k, x, θ) = eiθ

k
G`(η, kr)V (r)[F`(η, kr)A`(η, k, x, θ)+G`(η, kr)B`(η, k, x, θ)]

(18)

∂xB`(η, k, x, θ) = −eiθ

k
F`(η, kr)V (r)[F`(η, kr)A`(η, k, x, θ)+G`(η, kr)B`(η, k, x, θ)].

(19)

The corresponding boundary conditions,

A`(η, k,0, θ) = 1 B`(η, k,0, θ) = 0 (20)

follow immediately from (12) and (17).
In other words, we have two equivalent pairs of equations, equations (10), (11) and (18),

(19), defining the same function8`(k, r) in its two different representations (9) and (16).
Computationally it is easier to start the integration of equations (18) and (19) atxmin and
continue it up to some intermediate pointxint (not necessary small), and then to integrate
equations (10) and (11) fromxint to xmax whereF (−)` (η, k, xmax, θ) coincides with the Jost
function.

Similarly to equations (10) and (11) the differential equations forA`(η, k, x, θ) and
B`(η, k, x, θ) can be transformed into integral Volterra-type equations,

A`(η, k, x, θ) = 1+ eiθ

k

∫ x

0
G`(η, kx

′eiθ )V (x ′eiθ )8`(k, x
′eiθ ) dx ′ (21)

B`(η, k, x, θ) = −eiθ

k

∫ x

0
F`(η, kx

′eiθ )V (x ′eiθ )8`(k, x
′eiθ ) dx ′ (22)

where8`(k, r) is defined by equation (16). Iterations of these integral equations can also
be used to obtain corrections, if necessary, to the simplest form of the boundary conditions,
namely,

A`(η, k, xmin, θ) = 1 B`(η, k, xmin, θ) = 0. (23)

3.2. Large distances

The behaviour of8`(k, r) at large distances, is determined by the functionsH
(±)
` (η, kr).

Therefore, the correct asymptotic form is automatically secured.
Indeed, suppose we have found on the positive imaginary axis of thek-plane a value

k0 for which F (−)` (η, k0, xmax, 0) = 0 (when Imk > 0 we can always putθ = 0), i.e. we
located a zero of the Jost function corresponding to a bound state. The physical bound state
wavefunction is then given by,

ϕbound
` (k0, r) = N8`(k0, r)

and differs from8`(k0, r) only by a normalization factorN which can, in principle, be
found along with8`(k0, r) in terms of the Jost function and its derivative [15, 16], or simply
from the normalization integral. At larger only the first term of equation (9) survives, i.e.

8`(k0, r) −→|r|→∞
1
2F

(+)
` (η, k0, xmax, 0)H (+)

` (η, k0r). (24)

Obviously, in this expression the exponentially decaying tail of the bound state wavefunction
is presented in an exact form.
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For scattering states (real positivek), the asymptotic form of8`(k, r) contains both
terms of equation (9),

8`(k, r) −→|r|→∞
1
2[H(+)

` (η, kr)F (+)` (η, k, xmax, 0)+H(−)
` (η, kr)F (−)` (η, k, xmax, 0)] (25)

where the functionsH(±)
` (η, kr) represent the incoming and outgoing spherical waves (again

in the exact form). The scattering wavefunction,ϕscatt
`,k (r), differs from8`(k, r) only by a

constant factor, namely,

ϕscatt
`,k (r) =

1

2F (−)` (η, k, xmax, 0)
[H(+)

` (η, kr)F (+)` (η, k, x,0)+H(−)
` (η, kr)F (−)` (η, k, x,0)]

(26)

where we assume that the scattering states|9scatt
k 〉 are normalized according to

〈9scatt
k′ |9scatt

k 〉 = δ(k′ − k)
and expand in partial waves as follows:

〈r|9scatt
k 〉 =

√
2

π

1

kr

∑
`m

i`ϕscatt
`,k (r)Y

∗
`m(k̂)Y`m(r̂).

For the Siegert states, corresponding to zeros ofF (−)` (η, k, xmax, θ) in the lower half
of the k-plane, we have the same kind of asymptotic behaviour as in8`(k0, r) given by
equation (24) but in this caseθ > 0, and therefore such states can be treated and normalized
similarly to bound states [2].

In summary, representation (16) secures the proper behaviour of8`(k, r) at short
distances, while representation (9) guarantees its correct behaviour at larger. The use
of these representations enables us to achieve high accuracy in the solution of equation (3)
at all complex values ofk.

4. Numerical examples

In order to demonstrate the ability and accuracy of the proposed method, we choose two
simple potentials previously used in [6–9]. This choice is further motivated by the richness
of the spectra generated by these potentials and by their simple form. And, as we found,
their spectra include very wide, as well as extremely narrow, resonances which are difficult
to locate with most of the existing methods. Thus, they are ideally suited as testing cases.

In atomic units [17], these potentials have the following form

V1(r) = 7.5r2 exp(−r)+ z
r

and

V2(r) = 5 exp[−0.25(r − 3.5)2] − 8 exp(−0.2r2).

The reader not accustomed to the atomic units, may assume that the above potentials are
given in MeV and the distances in fm. In such a case ¯h2/2m = 1

2 MeV fm−2 while the
Sommerfeld parameter is given byη = z/k. Then the numerical values of the resonance
energies are the same and independent of the unit used (MeV or atomic units). In what
follows, in order to avoid possible misunderstanding, we will use the MeV fm−1 units. We
note thatV1(r) is a good case to test the ability of the method to deal with interactions
having a Coulomb tail. Similarly to [9] we assumed that the Coulomb part is attractive
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Table 1. The zerosk0 of the Jost function in the complexk-plane and the energiesE0 and
widths0 of the S-wave resonances for the potentialV1(r) with (z = −1) and without(z = 0)
the Coulomb term.

z k0 (fm−1) E0 (MeV) 0 (MeV) Reference

0 2.617 786 172− i0.004 879 876 3.426 390 331 0.025 548 962 this work
3.426 39 0.025 549 [6]
3.425 7 0.025 6 [7]
3.426 0.025 6 [8]
3.426 0.025 8 [9]

0 3.130 042 444− i0.357 144 253 4.834 806 841 2.235 753 338 this work
0 3.398 392 393− i0.997 251 873 5.277 279 780 6.778 106 356 this work

−1 1.887 074 210− i0.000 025 362 1.780 524 536 0.000 095 719 this work
1.780 5 0.000 095 8 [9]

−1 2.871 167 766− i0.201 530 270 4.101 494 946 1.157 254 428 this work
−1 3.169 186 525− i0.846 652 839 4.663 461 099 5.366 401 539 this work

with z = −1. In order to compare our results with those given in [6–8], we also performed
calculations withz = 0.

To locate zeros of the Jost function in the complexk-plane as well as in the complex
`-plane, we searched for minima of its modulus,|F (−)` (η, k, xmax, θ)|, considered as a
function of two variables, either Rek and Imk or Re` and Im`. This is based on the
so-called maximum modulus principle for a complex-valued function [18]. According to
this principle, when a functionf (z) is holomorphic and not constant in a regionD of the
complex plane,|f (z)| can never attain its maximum in the interior ofD but only on the
boundary ofD. Therefore the minima of|f (z)| must coincide with the zeros off (z).
Indeed, assuming that|f (z)| has a minimum atz = z0 inside the areaD and f (z0) 6= 0
then around the pointz0 the function 1/f (z) is holomorphic and has a maximum inside an
area, which contradicts the maximum modulus principle. Thus, if a minimum of|f (z)| is
found, it must be the zero off (z).

The located zeros of the Jost function in the fourth quadrant of the complexk-plane for
the potentialV1(r) for the ` = 0 partial wave, and the corresponding resonance energies
and widths are presented in table 1 together with the results of [6–9]. Our calculations have
been performed with the simplest boundary condition (23). This was sufficient to achieve
an accuracy of at least nine digits. This is checked by changing the rotation angleθ since
the Jost function must beθ -independent. We note that only few S-wave resonances are
presented although many more were located. The reason is that this potential has already
been used by several authors (but only for the case` = 0) and thus we employed it in order
to compare our results with those of [6–9]. The sequence of the S-wave resonant zeros
continues downwards in the complexk-plane. This behaviour can be seen in figure 1 where
these zeros are plotted. A similar behaviour was also found for resonances of higher partial
waves. In these cases, however, the first few zeros of the sequences are closer to the real
axis (which means that they have a smaller width). The same properties were found for the
resonances of the potentialV2(r) which generates a richer spectrum.

A comparison with the other calculations for the potentialV1(r) shows (see table 1)
that only the ‘direct’ (dilatation) method of [6] gives an accuracy which is comparable with
ours. In that reference, the five-digit accuracy was achieved by using over 40 exponentially
decreasing functions in the expansion of the rotated Siegert state. In contrast, a nine-digit
accuracy is achieved by our method without any exertion and, if neccessary, can easily be
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Figure 1. The zeros of the Jost function for the S-wave resonances of the potentialV1(r) with
(open circles) and without (full circles) the Coulomb term. Exact values are given in table 1.
The dividing line corresponds to the rotation angleθ = 0.1π .

improved. Such an improvement is of crucial importance when one deals with extremely
narrow resonances. When the width of a resonance is seven orders of magnitude less than
its energy, one needs at least a seven-digit accuracy to be able to discern it.

Another extreme situation is the case of very broad resonances, i.e. when the Jost
function zeros are situated far below the real axis. As can be seen in table 1, even for
the first resonance (E0 = 3.426 390 331 MeV,0 = 0.025 548 962 MeV) only a three-
digit accuracy of the width has been achieved by the ‘real-energy methods’ of [7, 8]
and by the ‘semi-complex method’ of [9] while the next, moderately broad, resonance
(E0 = 4.834 806 841 MeV,0 = 2.235 753 338 MeV), is already beyond their resolution.

The ‘real-energy methods’ of [7, 8] consider eigenenergies of a system enclosed in a
box. These eigenenergies are moving together with the change of the radius of the box,
generating the so-called quasicrossings at resonance energies. The width of a resonance is
determined by the width of the quasicrossing. Such an approach exploits the physical idea
that the resonant states, are only slightly affected by variations of the radius of the box, in
contrast to the spurious states that emerge in the box. It seems, however, that this idea is not
suitable for broad resonant states. Indeed, in figure 1 of [7] and figure 1 of [8], presenting
the box eigenenergies, no traces of the the second quasicrossing of the S-wave resonance
at E = 4.834 806 841 MeV or of the third atE = 5.277 279 780 MeV can be found.

It is claimed that broad resonances are unimportant and thus the inability of a method to
describe them is a minor drawback. However, in certain physical systems, broad resonances
play a significant role. An example is theS11(1535) resonance of the interaction of theη-
meson with a nucleon which lies 48 MeV above the threshold while its width is 150 MeV
[19]. Nevertheless it prescribes the dynamics of theη-meson interaction with nuclei. In
particular, due to this resonanance, certainη-nucleus systems can have quasibound states
[20].

One of the advantages of the exact method presented in this work, is that bound,
scattering, and resonant states can be treated in a uniform way regardless of their width.
All spectral points can be located with the same accuracy irrespective of their location on
the complexk-plane. This is exemplified by the spectral analysis of the potentialV2(r).
Sequences of the bound and resonant states generated by this potential are given in tables 2
and 3. The S- and P-wave sequences are also shown in figure 2.

The S-wave states, generated by the potentialV2(r), were previously considered in [7],
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Table 2. The zerosk0 of the Jost function in the complexk-plane and the energiesE0 and
widths0 of the S-wave bound and resonant states for the potentialV2(r).

` k0 (fm−1) E0 (MeV) 0 (MeV) Reference

0 i3.023 634 507 −4.571 182 814 0 this work
0 i1.329 872 758 −0.884 280 776 0 this work
0 2.122 442 334− i0.000 027 859 2.252 380 731 0.000 118 256 this work

2.252 37 0.000 119 6 [7]
0 3.000 600 515− i0.041 316 851 4.500 948 186 0.247 950 731 this work

4.50 0.28 [7]
0 3.485 234 669− i0.360 967 988 6.008 281 406 2.516 116 297 this work
0 3.974 580 284− i0.788 297 975 7.587 937 367 6.266 307 179 this work
0 4.454 733 926− i1.227 097 054 9.169 443 586 10.932 781 876 this work
0 4.922 800 349− i1.664 647 328 10.731 456 273 16.389 452 891 this work
0 5.378 677 040− i2.097 566 794 12.265 190 122 22.564 268 707 this work

Table 3. The zerosk0 of the Jost function in the complexk-plane and the energiesE0 and
widths0 of the bound and resonant states for the potentialV2(r) in several higher partial waves
(16 ` 6 4).

` k0 (fm−1) E0 (MeV) 0 (MeV)

1 i2.289 054 013 −2.619 884 138 0
1 1.270 932 606− i0.000 000 043 0.807 634 844 0.000 000 110
1 2.674 841 953− i0.002 433 228 3.577 386 775 0.013 017 001
1 3.263 588 553− i0.162 882 441 5.312 239 776 1.063 162 540
1 3.742 982 846− i0.564 324 132 6.845 729 429 4.224 511 090
1 4.225 164 261− i0.999 000 737 8.427 005 280 8.441 884 426
1 4.696 779 393− i1.437 816 345 9.996 210 410 13.506 212 364
1 5.156 711 217− i1.873 567 558 11.540 707 589 19.322 893 683

2 i1.232 503 483 −0.759 532 418 0
2 2.183 644 493− i0.000 018 973 2.384 151 637 0.000 082 862
2 3.052 966 547− i0.035 600 651 4.659 668 666 0.217 375 191
2 3.527 492 840− i0.341 406 094 6.163 323 809 2.408 615 103

3 1.420 585 762− i0.000 000 016 1.009 031 953 0.000 000 046
3 2.760 769 155− i0.001 484 354 3.810 922 062 0.008 195 917
3 3.343 986 231− i0.139 396 664 5.581 406 240 0.932 281 051
3 3.802 701 793− i0.526 397 919 7.091 723 079 4.003 468 620

4 2.313 665 822− i0.000 006 013 2.676 524 768 0.000 027 824
4 3.170 315 114− i0.023 354 979 5.025 176 235 0.148 085 287
4 3.623 738 918− i0.294 896 551 6.522 259 887 2.137 256 217
4 4.076 486 137− i0.706 384 524 8.059 380 065 5.759 133 441

where only the first two resonances were found. As can be seen in table 2, the spherical-box
method of [7] provides the position of the first (narrow) resonance fairly well. However,
the width is obtained only to two correct digits. For the second resonance, which is broader
than the first one, the accuracy for the energy evaluation is down to three digits and for the
width just to one digit. The other resonances of the S-wave sequence, presented in table 2,
were not obtained with the box method.

The accuracy of the present method is determined by the accuracy of the solution
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Figure 2. The zeros of the Jost function corresponding to bound and resonant states generated
by the potentialV2(r) in the S- (open circles) and P- (full circles) partial waves. The full box
indicates the D-wave bound state. Exact values are given in tables 2 and 3. The dividing line
corresponds to the rotation angleθ = 0.15π .

Table 4. The two lowest Regge trajectories for the potentialV2(r). Only those points which
correspond to the bound and resonant energies are given.

First Regge trajectory Second Regge trajectory

E (MeV) ` E (MeV) `

−4.571 182 814 0 −0.884 280 776 0
−2.619 884 138 1 0.807 634 844 1.000 000 000+ i0.000 000 034
−0.759 532 418 2 2.384 151 637 2.000 000 000+ i0.000 027 431

1.009 031 953 3.000 000 000+ i0.000 000 013 3.810 922 062 2.999 963 480+ i0.003 081 380
2.676 524 768 4.000 000 000+ i0.000 008 632 5.025 176 235 3.990 736 977+ i0.065 066 318

of the differential equations. By choosing the tolerance to be small enough we
can locate practically all resonances. Two remarkable examples of extremely narrow
resonances, generated by the potentialV2(r), are the one found for the P-wave at
E0 = 0.807 634 844 MeV (0 = 0.110× 10−6 MeV) and the other for the F-wave at
E0 = 1.009 031 953 MeV (0 = 0.46×10−7 MeV) and are parts of the sequences presented
in table 3. If the attraction of the potential is slightly increased, these extremely narrow
resonances become bound states in the P and F partial waves.

Some of the Jost-function zeros found in the complex`-plane are given in tables 4 and
5. The corresponding Regge trajectories are depicted in figure 3. Each trajectory begins
from an S-wave spectral state. The first one begins from the ground state and passes via
the lowest states of each partial wave. When the energy is negative, the trajectory lies on
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Table 5. The third and fourth Regge trajectories for the potentialV2(r). These trajectories start
from the lowest S-wave resonances.

Third Regge trajectory Fourth Regge trajectory

E (MeV) ` E (MeV) `

2.252 380 731 −0.000 000 010+ i0.000 041 610 4.500 948 186 −0.037 200 122+ i0.130 360 179
3.577 386 775 0.999 888 289+ i0.005 370 144 5.312 239 776 0.726 629 120+ i0.451 038 159
4.659 668 666 1.976 641 344+ i0.104 936 778 6.163 323 809 1.389 037 872+ i0.838 973 703
5.581 406 240 2.805 402 233+ i0.392 410 862 7.091 723 079 2.025 517 176+ i1.253 031 383
6.522 259 887 3.530 415 810+ i0.760 317 663 8.059 380 065 2.634 772 674+ i1.671 995 431

Figure 3. The five lowest Regge trajectories for the potentialV2(r). Exact values of the points
are given in tables 4 and 5. Full circles indicate points which coincide (they are at the same
place of thè -plane but correspond to different energies) or cannot be distinguished.

the real axis, while at positive energies it gradually goes upwards. We note that the width
of a narrow resonance can, in principle, be found via Im` which corresponds to an integer
value of Rè . However, the relation between0 and Im` also involves the derivative of the
trajectory [16].

The Regge trajectories, can provide us with useful information on the spectrum of the
physical system. They combine bound and resonant states into families and therefore in
calculating such trajectories, we can find out at which energies and in which partial waves
resonances must exist. Furthermore, the Regge trajectories give us a general insight into
the spectrum of the Hamiltonian under consideration. For example, we can state that the
F-wave resonance atE = 1.009 031 953 MeV is the narrowest one for the potentialV2(r).
This follows from the fact that this resonance belongs to the lowest Regge trajectory and is
the first on it.

In conclusion, the method we present in this article, enables us to locate the zeros of the
Jost function in the complexk-plane and to calculate the Regge trajectories in the complex
`-plane in a simple, efficient, and extremely accurate way. To the best of our knowledge,
no other method has achieved such a performance in the past. Since it is based on exact
equations, the method simultaneously provides us with the corresponding wavefunctions of
the spectral states.

As a final note we mention that the method can be easily generalized to treat coupled
channel problems having the same angular momentum. In such a case we replace the
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potential and the functionsF (±)` (η, k, x, θ) by matrices and the spectrum is then defined by
the zeros of the Jost-matrix determinant. Channels of different angular momenta can also
be treated in the same manner, but this requires a more elaborate treatment of the boundary
conditions atx = 0 since some off-diagonal elements of the matricesF (±)` for different
` may be singular at the origin. Non-local potentials can also be considered within the
proposed approach. Work on all these generalizations is under way.
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